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Dennis Lomas argues that diagrams play a vital and valid role in mathematical
reasoning. I like what he is trying to do but am troubled by how he is going about
it. He makes many questionable assumptions which tend to undermine the holistic
value of the essay, even though they support a valid, if unnecessarily weak,
conclusion.

The main problem essentially lies in his starting position, which seems to be that
proof is unproblematic in the community of professional mathematicians, that
mathematicians agree on the nature and centrality of formal proofs in mathematics,
and that there is no distinction between mathematical reasoning and mathematical
proofs. These assumptions simply belie almost everything that has been written
from Godel to Lakatos, from Wittgenstein to Ernest, and from Hana to Henderson.
Godel and Lakatos undermined the idea that proof can be infallible and independent
of human thought and social processes.1 Wittgenstein and Ernest have described
linguistic communication and the social nature of acceptance of a proof.2 Hana
describes the secondary, almost auxiliary role that formal proofs play in the work of
most mathematicians and explains the lack of any widespread criteria for what
constitutes a valid proof within the mathematical community. For Hana, there is a
huge gulf between “formal proof,” which is relatively unimportant, and “mathemati-
cal reasoning,” which is central to the work of all mathematicians.3 Henderson goes
a step further, arguing that is not in the nature of the form of the proof itself, but rather
in the meaning of the individual knower, that a proof achieves validity.4

Few mathematicians would argue against the role of diagrams in everyday
mathematical reasoning, and reading any mathematical journal provides evidence
that diagrams are legitimate components of the mathematical arguments which are
at the heart of communication among mathematicians. Thus, it seems quite unnec-
essary to argue for the legitimacy of diagrams in the everyday activities of
mathematicians. Thus, even before turning to the specific issue of diagrams in
formal proofs, it seems that Lomas’s primary issue can be resolved. There is a strong
consensus in the mathematics education community that mathematical reasoning,
sense-making, and communication should be central in the K-12 curriculum, much
as they are in the practice of mathematicians. A corollary is that if formal proofs are
to have any role at all in K-12 mathematics, it should be as a tool to support
mathematical reasoning, not the other way around, as is so often assumed.5 Thus the
question is not whether diagrams are a legitimate part of K-12 mathematics, but
whether it would even be possible to have a meaningful mathematics curriculum
without diagrams as a central component.

DIAGRAMS AND FORMAL PROOFS

Since there is no widespread agreement about what counts as a formal proof, one
might start with the criterion that it is a proof which only uses symbols and the rules
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for manipulating them. Although such a definition would exclude diagrams, it raises
the question of whether there is any validity to such a restriction, other than historical
capriciousness. The first question one might ask is about the nature of the distinction
between diagrams and symbols. For Lomas, a symbol seems to represent a general
class of mathematical objects, but it is not clear whether he attributes a similar role
to diagrams. In the Socrates example, he tends to treat the square in the sand as an
actual instance of one particular square. Viewing it in this way validates the
necessity of a generalizing inference, such as Lomas gives near the beginning of his
essay: “(INF) This particular square is like any other except for size, location, and
orientation; the technique for doubling this square does not depend on its size
location, or, orientation; therefore.” However, if one views a diagram as a represen-
tation of a class of objects, such an inference is not necessary. It is not at all clear that
most people do think of diagrams as specific examples of a class. In the Socrates
example, the “square” in the sand is, of course, not a square. Rather, each actor must
take it to be a square. In doing so, it becomes a representation of a square. But in
seeing it as a representation of a square, there is no indication that either Socrates or
Meno was focusing on its size or orientation — that is, it was not just an example of
a particular square for them, but a representation of the class of squares. Squares, as
all mathematical objects, are in the minds of the players, not in the physical world.
As a representation of “squares,” the figure in the sand becomes a tool for thought,
a tool that assists one in reasoning about squares. Of course, one must ultimately
examine that reasoning process to determine what class of figures are actually
compatible with that process, specifically to determine whether the class of squares
is compatible. This was, one could argue, just what Socrates was doing when he
asked Meno: “And such a figure could be larger or smaller?”

Thus, even if we take a diagram to be a representation of a class of mathematical
objects, we must check either during or after the reasoning process to be sure that that
process applies to all squares or, if not, what figures it does apply to. However, rather
than making diagrams distinct from symbols, this process is exactly what we do
when arguing with symbols. For example, when arguing about numbers, a division
by x - 1 requires us to remove the case of x = 1 from our conclusions, including
division by 2 in an argument about integers requires us to limit our conclusion to
even integers. And this process extends to more formal proofs. For example, how do
we know that 2 + 2 = 4? Mathematicians, in general, would reject as a proof the
example of two apples plus two apples, specifically because it appears to be only an
example. However, in discussing a formal set-theoretic proof that 2 + 2 = 4,
mathematician, J.L. Mackie, claims: “The conclusion that issues from it has exactly
the same status as that issuing from the apple proof. That is to say: it depends on an
instance of 2 + 2 = 4. We use the result that 2 + 2 = 4 in order to select, order,
apprehend and arrange the symbols of the proof.”6 Mackie argues that we accept the
proof because we defined our sets for which we already knew the result would hold.
Taking Mackie literally would imply that every proof is nothing more than an
example. However, we might view either proof as representational of a class of
objects for which the conclusion holds. Either proof (sets or apples) is, in fact, valid
for all those classes of objects for which 2 + 2 = 4, and is not valid for cases where
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2 + 2 does not equal 4 (for example, the metaphorical case of adding apples and
oranges). Thus generically, there is very little difference between the roles of
symbols and diagrams (and objects) in proof. Both can become representations for
classes of mathematical objects which are mental entities. As representations, they
play the role of tools to assist thinking about these classes. Both require a careful
coordination between the process of reasoning and the class of objects being
examined.

GEOMETRIC PROOF

This does not mean that all representations are equal. Symbols are particularly
useful for representing a number, for a shorthand designation of components of a
diagram, to represent more complex and higher dimensional figures which cannot
easily be represented by a diagram, and to represent the measure of a geometrical
object. In the latter two cases, however, there is often a loss. When a symbol
represents a geometric object, it becomes a less valuable tool for mathematical
reasoning because it has less connection to the geometric objects under consider-
ation.

In Lomas’s proof of the Pythagorean theorem, he uses symbols to represent the
measure of geometric objects. In doing so, his proof has little to do with geometric
reasoning, and, in fact, alters the meaning of this theorem. In figure 1, the
Pythagorean theorem states that for any right triangle, 1, the area of the square, A,
on the hypotenuse is equal to the combined areas of the squares, B and C, on the two
legs. The diagram Lomas uses is essentially that of figure one, where one first creates
three copies of triangle 1, then arranges them so as to create square S, which contains
the four congruent triangles and square A.

Lomas concludes the proof by using “a” as the measure of the short leg, “b” as
the measure of the long leg, and “a+b” as the measure of the side of square S. From
this he uses algebraic manipulation to prove his conclusion. Whereas Lomas and
others take the position that the algebraic component is the substance of the proof
which provides its ultimate validity, I would take just the opposite position.
Whenever one takes the measure of a geometric object and then uses numeric
reasoning to reach a geometric conclusion, one is using derived or secondary
properties which obscure the original geometric argument. One has to do a mental
adjustment from focusing on the equivalence of the areas of geometric figures to
focusing on the equivalence of the measures of geometric areas. In this case, as in
most geometric arguments, such a transformation not only weakens the geometric
understanding, but is unnecessary. Figure two shows a simple method of obtaining
the desired result without destroying the integrity of the geometric argument. Sliding
triangle 4 to the top right of square S while sliding triangles 1 and 3 to the bottom
left allows one to see square A dissected into squares B and C without resorting to
measurement.

Although I agree with Lomas that language is an important part of reasoning,
it is often not the only means of communicating an argument. Others include
pictures, body movement, physical contact, expression, and so on. In fact, if an
individual understood the goal of showing that the area of square A is equivalent to
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the combined areas of squares B and C, it is quite likely that she could come to
understand the “proof” represented in figures 1 and 2, even if she shared no common
language with her teacher. On the other hand, sharing a common language is
certainly no guarantee that mathematical communication takes place. A likely
example is the case of Socrates and Meno. Despite the fact that they share a common
language, it is not at all clear what it is that Meno does come to understand. It seems
quite possible that Meno has learned very little about geometry, but is quite adept
at figuring out the appropriate way to respond to Socrates’ questions (a skill many
students learn). One might then argue that the importance of the shared language and
culture is more to allow Meno to infer what response Socrates is seeking than to help
him understand properties of squares.

Despite these criticisms, I applaud the direction Lomas is taking. For those still
ensconced in one particular traditional and narrow view of mathematics and the role
of proof, his arguments are valid and will hopefully spread some enlightenment. It
would have been helpful, however, if he had situated his arguments more within a
framework compatible with the mainstream thought of most mathematicians and
mathematics educators.

MY APPRECIATION TO David Henderson, Cornell University, for his helpful comments on this
article.
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