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Computer-assisted learning environments in education are not just a futuristic
dream but a reality, and the trend seems to be unstoppable. Mathematics is no
exception, prompting psychologists in the field of mathematics education to
investigate computers in pedagogy and learning, especially visual components of
mathematical learning.1 This essay addresses an epistemological issue that is posed
in using diagrams in mathematical reasoning: What is the epistemological status of
diagrammatic reasoning? Specifically, is diagrammatic reasoning a full-fledged
form of mathematical reasoning or is it merely an intuitive appendage (a pedagogical
or psychological helping hand for the student rather than true mathematical reason-
ing that, it is typically thought, is characterized by purely abstract or logical
thought)? This issue especially pertains to the work of education theorists who hold
that diagrams are purely intuitive aids, yet seem to implicitly accept them as
legitimate components of proofs, for example, of the Pythagorean theorem.2

It is important to distinguish the issue of the epistemological status of mathematic
reasoning with diagrams from a developmental issue. Typically, in theories of
mathematical development a series of stages is theorized that to one degree or
another a student is thought to pass through. Even though theorists may argue, for
example, over whether one particular stage is a prerequisite for another and, if so,
to what extent, there is no disagreement that stages are required (for example, there
are the stages of Piaget and those of Van Heil3). This paper does not dispute this
contention. Rather it questions whether diagrammatic mathematical reasoning can
legitimately be judged to be merely intuitive, even though it may be a prerequisite
for other forms of mathematical reasoning.

This essay does not take the view that mathematical diagrammatic reasoning
can be divorced from linguistic communication about diagrams or from linguisti-
cally expressed inferences about the diagrams. So there is no argument here for the
position that visual cognition, if there is such a thing separate from other forms of
cognition, alone is sufficient for mathematical reasoning.

With these clarifications in hand, this essay argues that diagrammatic reasoning
is not just an intuitive tool, but a full-fledged part of some types of mathematical
reasoning. It does so by examining the informational and representational function
of diagrams in mathematical proofs.

DIAGRAMS AND MATHEMATICAL  THOUGHT

To focus the discussion, a diagrammatic proof of the Pythagorean theorem is
considered. In fact, a special case of the theorem is first discussed in which the
theorem is proved for a right-angle, isosceles triangle. This is the proof that Plato
made famous in Meno where a boy, under Socrates’ instruction, has a series of
insights that allow him to figure out how to double a square (how to construct a
square that is exactly double the area of any given square).4 By Socrates’ lights, the
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boy’s performance demonstrates Socrates’ theory of learning as “remembering,” a
sort of innateness claim: “[T]here is no teaching but recollection” (82a). For the
purposes of this essay, the interest of the scene lies in its true-to-life dramatization
of linguistic and mathematical prerequisites for a certain type of reasoning and
crucial features of that reasoning.

The linguistic prerequisites for the reasoning are implicitly given up front:
S: Is he a Greek? Does he speak Greek?
M: Very much so. He was born in my household (82b).

So the boy is proficient in Greek and, of course, considerable language understand-
ing is necessary to follow Socrates’ argument. The boy also knows some mathemat-
ics. He knows, for example, what a square is: “S: Tell me now, boy, you know that
a square figure is like this? — I do (82b).” and he knows four is double two (85b).
In fact, Socrates and the boy share many concepts; otherwise they could not converse
with each other.

Relying on the particular figures in the sand, the boy learns, through a series of
sound inferences, aided along the way by figuring out the error with a few unsound
inferences, how to double a particular square in the sand and, generalizing from this
knowledge, how to double any square. This generalization, it seems, relies on both
Socrates and the boy taking the properties of the diagrams in the sand to represent
the relevant properties of all squares. The text suggests this by Socrates’ query: “And
such a figure [the square drawn in the sand] could be larger or smaller?” and the boy’s
response: “Certainly.” (FD, 82c) So the reasoning of the boy, once he finds the
solution for the particular square drawn in the sand, if spelled out, would presumably
be something like this inference, labeled INF for future reference:

(INF) This particular square is like any other except for size, location, and
orientation; the technique for doubling this square does not depend on its size,
location, or orientation; therefore, this technique for doubling this square will
work for any square.

The contention that Plato can be interpreted as characterizing the boy’s thought in
this way is, admittedly, not a knock-down exegetical argument, nor is it intended to
be. Plato is being drawn on for his true-to-life account of a mathematical learning
experience. Even if the appeal to INF by reasoners does not follow from an
exegetical account of Plato, still, what matters is that reasoners employ INF in the
problem dramatized by Plato. This is commonly accepted; in fact, inferences such
as INF are a basis of geometric reasoning.

Since, in effect, the technique for doubling a square, learned by the servant boy,
is a proof of a special case of the Pythagorean theorem for isosceles, right-angle
triangles, this scene shows how diagrams can play a role in mathematical proofs.
Diagrams can play a similar role in proving the full Pythagorean theorem.5

Such proofs, like all diagrammatic reasoning, are held in disrepute by most
mathematicians and logicians. At best they are considered mere “aids to intuition”
and not legitimate constituents of mathematical proofs, due to the danger of
generalizing from accidental features of diagrams. Logician Neil Tennant adheres
to this standard view:
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[The diagram] is only an heuristic to prompt certain trains of inference.…it
is dispensable as a proof-theoretic device; indeed…it has no proper
place in the proof as such. For the proof is a syntactic object consisting
only of sentences arranged in a finite and inspectable array.6

Logicians Jon Barwise and John Etchemendy contend that this
stance is mistaken, that if care is taken not to use accidental features
of diagrams in proofs, reasoning with diagrams can be sound. In
challenging the current dogma that all sound reasoning must be
exclusively sentential, they draw on the work of psychologists such
as Stenning and Kosslyn, who similarly have challenged this
dogma.7 Barwise and Etchemendy recommend a theory of “hetero-
geneous” reasoning that specifies that thought is not characterized
by any one representationalist system. To illustrate their point they
present an elegant proof of the Pythagorean theorem that employs
both formal algebraic manipulation and diagrammatic manipula-
tion.8 This is a standard proof, the same as the following, see figure
at right.

The task is to show, starting with an arbitrary right-angle triangle with sides a,
b, and c, that a2+ b2 = c2. First construct a square on the hypotenuse c and replicate
the triangle three time as shown. Since the sum of the angles of a triangle is a straight
line, it can be easily shown that ABCD is a square. Now the area of ABCD can be
computed in two ways. Since the sides of ABCD are all (a + b) in length, its area is
(a + b)2 = a2 + 2ab + b2. Alternatively, the area is the sum of the areas of the four
triangles plus the area of the central square. That is, the area is 2ab + c2. These two
calculations yield a2 + b2 = c2, the desired result.

Having presented this proof, Barwise and Etchemendy argue:
It seems clear that this is a legitimate proof of the Pythagorean theorem. Note, however, that
the diagrams play a crucial role in the proof. We are not saying that one could not give an
analogous (and longer) proof without them, but rather that the proof as given makes crucial
use of them. To see this, we only need note that without them, the proof given above makes
no sense.

This proof of the Pythagorean theorem is an interesting combination of both geometric
manipulation of a diagram and algebraic manipulation of nondiagrammatic symbols. Once
you remember the diagram, however, the algebraic half of the proof is almost transparent.
This is a general feature of many geometric proofs: Once you have been given the relevant
diagram, the rest of the proof is not difficult to figure out. It seems odd to forswear
nonlinguistic representation and so be forced to mutilate this elegant proof by constructing
an analogous linguistic proof, one no one would ever discover or remember without the use
of diagrams.9

THE DUAL FUNCTION OF THE DIAGRAMS

The nature of mathematical reasoning that relies on mathematical diagrams can
be ascertained by asking: What is the function of diagrams in mathematical proofs
(that use them)? The diagram in the scene from the Meno seems to indicate two
interrelated types of functions. First, the diagram performs a function as a particular
diagram that Socrates and the boy talk about and point at, that Socrates draws, and
that the boy reasons about. In the end the boy discovers a property of this particular
diagram of a square.
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Second, the diagram performs a function as a representation that allows for the
generalization (such as that involved with INF) from the particular inferences
concerning the diagram in the sand, as noted above. It would seem that (with the
caveat regarding INF mentioned earlier) that agreement that the figure drawn in the
sand is a square and “such a figure could be larger or smaller” allows Socrates, at the
end of the lesson, to claim that the boy learned (that is, “remembered”) how to double
any square for the boy learned on what line any square can be doubled (82c): “That
is, on the line that stretches from corner to corner of the four-foot figure? — Yes. —
Clever men call this the diagonal, so that if diagonal is its name, you say that the
double figure would be that based on the diagonal? — Most certainly, Socrates
(85b).” A particular square not only represents any square but represents in a special
way that allows for the inference INF to any square. The particular square is the same
(approximately) as all squares except for size, location, and orientation. Thus, if INF
is to apply, the choice of possible representations of squares is narrowed down to a
single type: a particular square of arbitrary size, location, and orientation. For no
other type of representation is the same as all squares except for size, location, and
orientation. (A further reasonable restriction on the representation of squares is that
it must be visually perceived in one viewing.) Thus, although we can assign almost
anything to represent squares, in this situation only one type of thing will do, an
actual square in medium. Even though such a square need not be all that accurate,
it needs to be accurate enough to support the type of diagrammatic reasoning
displayed by the boy.

Diagrams function in this dual way in other types of reasoning. Suppose I set
up a chess problem P on my chess board. Say the problem is of the sort that is
typically found in chess columns in newspapers where a position is given, and the
reader is asked to find a checkmate in two moves. If I solve the particular chess
problem that I have set up on my chess board, why can I correctly infer that I have
found a solution to the problem that other people worked on when they set up P on
their own chess boards (assuming that they and I have set up the problem correctly)?
The correctness of this inference is due to the configuration of chess pieces on my
chess board that effectively represents the problem P by being the same configura-
tion of pieces of an 8 x 8 grid of a chess board as P and hence the same problem that
others are working on. Since my solution depends on this configuration on a 8 x 8
grid only and not, for example, on the size of my chess board or the design of my
chess pieces, my solution will work for all.

The chess problem example also highlights the role of manipulation of particu-
lar diagrams. Merely setting up the problem is not enough to solve it. One moves
pieces here and there or imagines moving them, and checks to see if the new
configuration leads to mate in one more move. If successful, a property of the
configuration of the chess pieces on the chess board — that the position does lead
to mate in two — is inferred from known properties of the configuration.

Similarly, the boy, aided by Socrates, checks various squares to ascertain
whether they are twice the size of the original square upon which they were
constructed. In the end, the boy discovers a property of the square in the sand
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unknown to him beforehand: A square with a side equal to the original square’s
diagonal is twice the area as the original square. Once again, an unknown property
for the boy is inferred from perceived properties.

Barwise and Etchemendy make the same point in a somewhat different way. For
them “[i]nference…is the task of extracting information implicit in some explicitly
presented information.”10 Here, presumably, Barwise and Etchemendy are using
“information” to refer to conceptual properties of the diagrams rather than the mere
intake of sensory neurons.

Thus mathematical diagrams play two interrelated roles in mathematical
thought, 1) as objects that people attempt to extract implicit information from, and
2) as representations of classes of geometric shapes to which reasoning applies. Both
these elements are indispensable in the reasoning itself. The implicit information is
not given in any other form, and the representational role of diagrams is necessary
for the proof.

An objection may be that alternate proofs dispense with diagrams. However,
that does not undermine the full-fledged role of diagrams in proofs that utilize them,
as Barwise and Etchemendy point out. In these situations they can be, and often are,
much more than mere aids to intuition.

IMPLICATIONS FOR MATHEMATICAL  EDUCATION

This position, although controversial in the philosophy of mathematics, is
deceptively difficult to avoid in mathematical education theory. For what are
teachers doing when they present a diagrammatic proof of the Pythagorean theory
other than presenting a full-fledged, honest-to-goodness proof, not a mere aid to
intuition of a proof? In fact, teachers claim to their students that it is a proof.

In the psychological literature on mathematics education there is ambiguity
concerning the epistemologist status of reasoning with diagrams. For example,
Raymond Duval writes: “The usefulness of geometrical figures in the resolution of
a problem of geometry is beyond doubt. They provide an intuitive presentation of all
constituent relations of a geometrical situation.”11 It is not clear from this quotation
what status Duval gives diagrams in proofs, whether the role of mere intuitive aids
or a fuller role, because his phrase “provide an intuitive presentation” is ambigu-
ous.12 In the same article, Duval offers a standard diagrammatic proof of the
Pythagorean theorem, much the same as that given by Barwise and Etchemendy
above. So one might suppose that, despite ambiguity, he advocates a fuller role for
diagrams than that of mere aids to intuition, although this is not clear from what he
has written.

Whether or not the question of the epistemological status of mathematical
diagrams impinges on research in mathematical education is hard to tell. Nonethe-
less, the question does pertain to the nature of the activity of educators. Are teachers
who employ diagrams in proofs teaching real proofs or just aids to intuition?
Although many teachers probably somehow think they are doing only the latter, in
reality they are often practicing the former. Similarly, students who learn diagram-
matic mathematical proofs are not merely employing intuition; they are doing real
mathematics.
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